Women in STEM: IBM’s Jennifer Glick on navigating the quantum career path
The STEM field is growing, creating tremendous opportunity for well-trained applicants. While STEM has traditionally been a male-dominated field, cultivating interest at the undergraduate level can help draw in more women who may have the necessary skills but have never considered STEM as a career path. In TBR’s monthly series Women in STEM, we discuss how female leaders have successfully pursued careers in STEM and are encouraging more female representation by passing on the lessons they’ve learned to other women who are pursuing this path.
Meet Jennifer Glick, a quantum computing applications researcher at IBM
Jennifer Glick received her doctorate in physics in 2017 for her work on the quantum information theory of measurement. In 2020 Glick was selected as one of MIT Technology Review’s 35 Innovators Under 35 for her work in quantum computing.
In her current role at IBM, Glick identifies promising quantum applications and develops proofs of concepts that drive advancements in quantum algorithms and methods. This work is essential to moving quantum computing from labs to the real world. In our recent discussion with Glick, she spoke of viewing college with an outcome mindset and boosting learning through free online resources as well as navigating the science path to a quantum career.
Encourage women to pursue STEM careers by being available to answer questions
Navigating the transition from academia to the corporate world can be difficult as universities do not always provide significant scaffolding during students’ academic career. For the highly specialized STEM fields, this is particularly true. But Glick recommends embracing this perceived roadblock with a growth mindset. “It turns out, [a growth mindset] is a great antidote to the impostor syndrome. Strategically seek out new experiences, ideas and challenges that get you out of your comfort zone,” says Glick. “It’s surprising how much you can learn just by observing the people around you.”
Glick adds that leaders in STEM fields can encourage young women to pursue careers in STEM by helping foster their initial interest and supporting them as that interest flourishes. Glick practices what she preaches, having mentored high school, undergraduate and graduate students while working toward her Ph.D.
View college with an outcome mindset, and then build backward with coursework
Many companies take a solutions outcome approach to their technology investments. Customers seek a particular outcome, and vendors then build architectures behind the scenes to enable that outcome. The customer does not necessarily know or care what underlying infrastructure they obtain as long as the desired outcome is achieved.
Education and how it relates to career choice can be thought of in a similar way. We compartmentalize education as something you complete before you start a career, but the reality is that lifelong learners are more likely to have successful careers. Glick’s advice to women considering a career in quantum computing is, “Study a combination of quantum physics, computer science and applied mathematics. A Ph.D. in physics is not strictly a prerequisite for working in quantum computing.”
Retool your existing skills via free online resources
For many, the idea of going back to college for additional degree work is unattainable. For those without existing degrees in quantum-related areas, Glick recommends leveraging free online resources to learn as much as you can on your subject of interest. As the field of quantum computing matures and expands, many related jobs in the industry are emerging, including around software engineering, sales, marketing and design. A variety of skills are necessary for the field of quantum computing to have long-term success. “Pay attention to key thought leaders in quantum computing — they can offer insight into where the field might be headed in the years to come,” says Glick.
Additionally, Glick recommends finding internships within the industry. Well-established STEM fields frequently offer internships to help apprentice young people seeking to work in fields with skills shortages. As careers in STEM become more technical, undergraduate degrees lay the foundational knowledge but on-the-job-training is the most valuable way to obtain the specialized skills necessary to succeed in STEM. A longstanding challenge with internship access has been physical location. However, COVID-19, for all of the hardships it has created, has connected the world digitally more than ever before. Young people in rural locations can now access internships and training at major metropolitan corporations virtually, which removes this physical location roadblock.
Don’t be daunted by the science: Quantum is a growing field with nonscientific opportunities as well
Perhaps Glick’s most important piece of advice is the reminder that emerging and complex scientific technologies are accessible. “Start using quantum computers,” says Glick. “Contribute to open-source software, try the circuit composer on the IBM Quantum Experience, use Qiskit to design and test quantum circuits and algorithms.” IBM has provided ways for people interested in a career in quantum computing, or simply interested in the technology as a hobby, to access it and not only learn from the technology but also eventually teach others. Leveraging online resources and courses, such as the Qiskit Textbook and Qiskit Global Summer School, in conjunction with playing around with IBM’s accessible quantum assets are ways to become smarter around a STEM technology.
Leave a Reply
Want to join the discussion?Feel free to contribute!